Do you like driving? I hate it. Driving fast and dangerous in a computer game is ok, but a quick and ephemeral thrill. But for real driving, to and from work, I have a long commute, and no amount of podcasts or music relieves the tiresomeness. Driving around here I need to be on constant alert, there are so many cockroaches (motor scooters) to look out for, and here in Thailand over half the scooter drivers do no t wear helmets, and I cannot drive 50 metres before seeing a young child driven around on a scooter without a helmet. Neither parent nor child will have a helmet. Mothers even cradle infants while hanging on at rear on a scooter. It might not be so bad if the speeds were slow, but they are not. That’s partly why I find driving exhausting. It is stressful to be so worried about so many other people.

Last evening I got home and collapsed and slept for 6 hours. Then woke up and could not get back to sleep, it was midnight. So naturally I got up made a cup of tea, heated up some lasagna and turned on a video of Edward Witten speaking at Strings 2015, *What Every Physicist Should Know About String Theory*.

Awesome!

True to the title it was illuminating. Watching Witten’s popular lectures is always good value. Mostly I find everything he presents I have heard or read about elsewhere, but never in so much seemingly understandable depth and insight. It is really lovely to hear Witten talk about the φ^{3} quantum field theory as a natural result of quantising gravity in 1-dimension. He describes this as one of *nature’s rhymes*: patterns at one scale or domain get repeated in others.

Then he describes how the obstacle to a quantum gravity theory in spacetime via a quantum field theory is the fact that in quantum mechanics states do not correspond to operators. He draws this as a Feynman diagram where a deformation of spacetime is indicated by a kink in a Feynman graph line. That’s an operator. Whereas states in quantum mechanics do not have such deformations, since they are points.

So that’s really nice isn’t it?

I had never heard the flaw of point particle quantum field theory given in such a simple and eloquent way. (The ultraviolet divergences are mentioned later by Witten.)

Then Witten does a similar thing for my understanding of how 2D conformal field theory relates to string theory and quantised gravity. In 2-dimensions there is a correspondence between operators and states in the quantum theory, and it is illustrated schematically by the conformal mapping that takes a point in a 2-manifold to a tube sticking out of the manifold.

The point being (excuse the pun) the states are the slices through this conformal geometry, and so deformations of the states are now equivalent to deformations of operators, and we have the correspondence needed for a quantum theory of gravity.

This is all very nice, but 3/4 of the way through his talk it still leaves some mystery to me.

- I still do not quite grok how this makes string theory background-free. The string world sheet is quantize-able and you get from this either a conformal field theory or quantum gravity, but how is this background-independent quantum gravity?

I find I have to rewind and watch Witten’s talk a number of times to put all the threads together, and I am still missing something. Since I do not have any physicist buddies at my disposal to bug and chat to about this I either have to try physicsforums or stackexchange or something to get some more insight.

So I rewound a few times and I am pretty certain Witten starts out using a Riemannian metric on a string, and then on a worldsheet. Both are already embedded in a spacetime. So he is not really describing quantum gravity in spacetime. He is describing a state-operator correspondence in a quantum gravity performed on string world sheets. Maybe in the end this comes out in the wash as equivalent to quantising general relativity? I cannot tell. In any case, everyone knows string theory yields a graviton. So in some sense you can say, “case closed up to phenomenology”, haha! Still, a lovely talk and a nice pre-bedtime diversion. But I persisted through to the end of the lecture — delayed sleep experiment.

My gut reaction was that Witten is using some slight of hand. The Conformal Field Theory maybe is background-free, since it is derived from quantum mechanics of the string world sheets. But the stringy gravity theory still has the string worldsheet fluffing around in a background spacetime. Does it not? Witten is not clear on this, though I’m sure in his mind he knows what he is talking about. Then, like he read my mind, Witten does give a partial answer to this.

What Witten gets around to saying is that if you go back earlier in his presentation where he starts with a quantum field theory on a 1D line, then on a 2d-manifold, the spacetime he uses, he claims, was arbitrary. So this partially answers my objections. He *is* using a background spacetime to kick-start the string/CFT theory, which he admits. But then he does the slight-of-hand and says

“what is more fundamental is the 2d conformal field theory that

mightbe described in terms of a spacetime but not necessarily.”

So my take on this is that what Witten is saying is (currently) most fundamental in string theory is the kick-starter 2d conformal field theory. Or the 2d manifold that starts out as the thing you quantise deformations on to get a phenomenological field theory including quantised gravity. But this might not even be the most fundamental structure. You start to get the idea that string/M-theory is going to moprh into a completely abstract model. The strings and membranes will end up not being fundamental. Which is perhaps not too bad.

I am not sure what else you need to start with a conformal field theory. But surely *some* kind of proto-primordial topological space is needed. Maybe it will eventually connect back to spin foams or spin networks or twistors. Haha! Wouldn’t *that* be a kick in the guts for string theorists, to find their theory is really built on top of twistor theory! I think twistors give you quite a bit *more* than a 2d conformal field, but maybe a “bit more” is what is needed to cure a few of the other ills that plague string theory phenomenology.

* * *

For what it’s worth, I actually think there is a need in fundamental physics to explain even more fundamental constructs, such as why do we need to start with a Lagrangian and then sum it’s action over all paths (or topologies if you are doing a conformal field theory)? This entire formalism, in my mind, needs some kind of more primitive justification.

Moreover, I think there is a big problem in field theory *per se*. My view is that spacetime is more fundamental than the fields. Field theory is what should “emerge” from a fundamental theory of spacetime physics, not the other way around. Yet “the other way round”, — i.e., fields first, *then* spacetime — seems to be what a lot of particle or string theorists seem to be suggesting. I realize this is thoroughly counter to the main stream of thought in modern physics, but I cannot help it, I’m really a bit of a classicist at heart. I do not try to actively swim against the stream, it’s just in this case that’s where I find my compass heading. Nevertheless, Witten’s ideas and the way he elaborates them are pretty insightful. Maybe I am unfair. I have heard Weinberg mention the fields are perhaps not fundamental.

* * *

OK, that’s all for now. I have to go and try to tackle Juan Maldacena’s talk now. He is not as easy to listen to though, but since this will be a talk for a general audience it might be comprehensible. Witten might be delightfully nerdy, but Maldacena is thoroughly cerebral and hard to comprehend. Hoping he takes it easy on his audience.

* * *

(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)